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Objectives for a streaming KPCA

I Small space requirement
I Small training time (process training data)
I Small testing time (evaluate unseen test data)
I Bound on potential error
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Algorithm: SKPCA

Input: Data A 2 Rn⇥d, kernel K, `,m 2 Z+

Output: RFF maps [f1, · · · , fm], subspace W
[f1, · · · , fm] = RFF(K,m)
B 0`⇥m

for i 2 [n] do

zi =
q
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[f1(ai), · · · , fm(ai)] } RFF projection

B zi
if B has no zero valued rows then
[Y,⌃,W] svd(B)

B 
q
max{0,⌃2 � ⌃2

`/2,`/2I`} · WT

end if
end for
Return [f1, · · · , fm] and W
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Theorem 1: Spectral error bound

Let G = ��T be the exact kernel matrix over n points. Let
G̃ = ZWTWZT be the result of Z from m = O((1/"2) log(n/�))
RFFand W from running Algorithm SKPCA with ` = 4/". Then with
probability at least 1� �, we have kG� G̃k2  "n.

Theorem 2: Frobenius error bound

Given that kG� G0k2  "n we can bound
kG� G0kkF  kG� GkkF + "

p
kn.

Runtime bounds to obtain kG0 � Gk2  "n

Train time Test time

KPCA O(n2(n + d)) O(n(d + n2))
Nystr

¨

om O(nd + n/"2 + 1/"4) O(d/"2 + 1/"4)
RNCA O(n((d/"2) log n + (1/"4) log2 n)) O((1/"2)(d + n) log n)

SKPCA O(n log n(d/"2 + 1/"3)) O((d + 1/")/"2 log n)

Space bounds to obtain kG0 � Gk2  "n

Space

KPCA O(n2 + nd)
Nystr

¨

om O(d/"2 + 1/"4)
RNCA O((d/"2)n log n)

SKPCA O(((d + 1/")/"2) log n)

Previous work

I Existing approaches to streaming/online KPCA either provide no error
bound, require substantial space during training time, or have an expensive
matrix inverse at test time.

I
Incremental KPCA techniques update the eigenspace of kernel PCA without
storing training data, but su↵er from unbounded compound error in
intermediate approximations of the eigenspace on adversarial data sets.

I
Nystrom approximation methods approximate the kernel (Gram) matrix
G = CW†

kC
T, by sampling columns of G in a non-streaming setting, but

require a costly matrix inverse at test time.
I

Randomized Nonlinear Component Analysis (RNCA) uses a Random Fourier

Feature (RFF) approximation to G via randomized feature maps by directly
approximating the lifting function, but use an exact (costly) covariance
computation.

I We propose Streaming KPCA (SKPCA), combining the computational
benefits of Random Fourier Features (RFF) and approximation bounds of
Frequent Directions (FD) to achieve the stated goals.

Datasets

I Methods were compared on real and synthetic datasets, including three real
datasets below from the UCI machine learning repository.

I The kernel matrix was found using an RBF kernel (or RFF equivalent) with
the bandwidth set to the averge inter-point distance – the spectra and input
data sizes from the three datasets are shown below.

CPU
7373⇥ 21

FOREST
523910⇥ 54

ADULT
33561⇥ 123
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Frobenius error Training time (sec) Testing time (sec)

I
Frobenius error is the approximation error, kG0 � GkF.

I The size of the sketch, `, is a parameter and we compare several choices,
` = {2, 5, 10, 20, 30, 50}, indicated by parenthesis in the legend.

Discussion

I
Nyström: fast training time (random sampling), considerably slower testing
time due to sample Gram matrix inversion.

I
RNCA: fast testing time (matrix multiplication), training slower because
complete covariance accumulation as data are observed

I
SKPCA: obtains a more balanced runtime where both training and testing
are competitive
. Error is competitive with previous methods (all methods less than 10�3 in
error)

. Improved error vs space for RFF based methods
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